BENVENUE ROAD CORRIDOR IMPROVEMENTS

ROCKY MOUNT, NORTH CAROLINA

JUNE 2016

Prepared By:Stantec Comsulting
Services
Raleigh Office

BENVENUE ROAD AND THE CITY OF ROCKY MOUNT

Benvenue Road serves as one of the primary gateways into the City of Rocky Mount, extending from a couplet at the core of a revitalizing downtown and the Tar River northward to the Thomas A. Betts Parkway. At this point, Benvenue Road changes names to Dortches Boulevard, which connects to I-95, the premier artery that feeds the urbanized area. Inside the 1.5 -mile-long study corridor, the roadway serves commercial uses in the majority of the study corridor, transitioning to residential at the northern end. In this area. the road connects a major shopping opportunity in the form of Golden East Crossing shopping mall and the US 301 Bypass (North Wesleyan Boulevard). Small, commercial properties serving a familiar highway-oriented marketplace dot the roadside: auto service centers; small distribution and storage facilities; pharmacies; and quick, chain eateries are common.

The following conceptual design of the Benvenue Road corridor from Hunter Hill Road to Northern Boulevard was predicated on the desire to accommodate a changing land use pattern occuring in Rocky Mount and across the country. Initially a strong connection between the downtown core and I-95
(via Dortches Boulevard), Benvenue Road has remained a viable commercial corridor, and one that could also serve a greater spectrum and more balanced set of uses than it does currently. By creating small-scale improvements to vehicular and pedestrian safety, the plan for this corridor should both support connecting existing retailers along Benvenue and help to ensure that a congest ed and aesthetically unpleasing corridor doesn't deter future customers and business opportunities relective of recent retail trends favoring walkable places Intelligent placement of medians, lighting, and streetscaping, as well as adjusting some of the geometric specifics at certain locations, should be considered a first, strong step towards achieving these objectives.

MOBILITY CHARACTERISTICS

Benvenue Road typically carried 13,000 to 25,000 vehicles per day (vpd) in 2013, according to the North Carolina Department of Transportation's (NCDOT) most recent counts. The traffic volumes peak in the vicinity of the Golden East Crossing Mall, and drop off the further one travels away from the mall area.

Sidewalks are scarce along both sides of the 1.5 -mile corridor (aerial below) with approximately 1,225 linear feet on the north (or east) side and 607 linear feet on the south (or west side), posing significant "gaps" throughout the corridor. Bicycle facilities are virtually non-existent. Additionally, the appearance of the corridor, with numerous curb cuts and a proliferation of regulatory and private signage; lack of consistent streetscaping materials; and poor lighting in some locations collectively create undesirable conditions for motorists and pedestrians alike.

MOBILITY CHARACTERISTICS

BENVENUE ROAD SIM TRAFFIC ANALYSIS

The software utilized for the following analysis was Synchro 9 (Build 9.1.104.126) for the signalized and unsignalized intersections. SimTraffic was used to determine queueing.

The PM peak hour has the heaviest volumes and was used for the SimTraffic analysis in order to model the "worst case" scenario. The SimTraffic reports provide maximum queue lengths for each leg of the intersections, and were used to compare to existing storage lengths in order to determine if a larger length would need to be considered to accommodate the demand in the roadway design process. The SimTraffic queuing reports are attached to this document

The table below organizes each intersection by movement with corresponding existing storage length, proposed storage length (according to SimTraffic max queue lengths), and the actual design storage length.

Some of the proposed storage lengths were not possible to accommodate due to geometric design constraints and avoiding design changes to any side streets. For example, at the Jeffreys Road intersection, southbound left storage length does not meet the needs of the current demand. A storage length of 225 feet would provide optimum space, but due to design restrictions, only a maximum of 190 feet is possible.

Storage Length Analysis				
Intersection	Movement	Current Storage Length	Proposed Storage Length	ACTUAL DESIGN
Northerm Blvd	wBL	175	175	
	NBL	250	250	250
	Sbl	250	250	
Country Club Rd	NBL	100	100	22
Goldrock Rd	WBL	200	250	
	NBL	150	150	225
	NBR*		200	200
Jeffreys Rd	EBL	225	225	
	EBR	275	275	
	WBL	450	450	
	NBL	250	250	250 (duals)
	SBL	175	225	190
Tiffany livd	WBL	150	150	
	WBR	150	250	
	SBL	200	275	275
US 301 Ramp	EBL	300	300	
Independence Dr	EBL	150	175	
	WBL	${ }^{150}$	200	
	NBL	250	250	270
	SBL	150	175	175
Thorpe Rd	N/A	N/A	N/A	
Hunter Hill	${ }^{\text {EBL }}$	200	200	
	EBR	200	200	
	WBL	100	100	
	WBR	175	225	
	NBL	175	175	
	${ }^{\text {NBR }}$	100 200	175	
	SBR	200	200	

accomodated on mainline	
not able to accommodate on	
mainline	
not able to accommodate on side	
street	

Queuing and Blocking Report
Intersection: 4: Benvenue Road \& Northern ${ }^{61222016}$

intersection: 5: Benvenue Road \& Thorpe

Intersection: 14: Benvenue Road \& Country Club

kueung ana brocking кероп

Intersection: 690: Benvenue Road \& Hunter Hill

Movement	EB	EB	EB	EB	EB	WB	WB	wB	WB	NB		
Diections Seved	L	L	T	R	R	L	T	R	R	L	L	
Maximum Queue (t)	32	58	32	58	19	45	67	158	158	31	127	
Average Queve (t)	${ }^{3}$	17	${ }^{6}$	18	1	9	17	${ }^{83}$	${ }^{38}$	${ }^{3}$	${ }^{38}$	
95in Queue (t)	17	46	${ }^{23}$	49	8	32	47	144	102	17	86	${ }^{174}$
Link isisance (t)			740				596					
Queung Penaly (ven)	200			200								
Storage Eik Time ($(\%)$				200				5	5	15		

Intersection: 690: Benvenue Road \& Hunter Hill

Queuing and Blocking Report
Intersection: 401: Benvenue Road \& Goldrock

Intersection: 523: Benvenue Road \& US 301 Ramp

Intersection: 681: Benvenue Road \& Tiffany

CHALLENGES

The Stantec Consulting Services Inc. project team met with City staff and conducted a windshield review of the corridor, stopping and walking along several sections as well. The team was directed to avoid moving the curb line or taking private rights-of-way when considering the conceptual designs. The ability to construct a continuous bicycle facility was therefore omitted from consideration, particularly given the physical constraints at the US 301 Business interchange bridge and ramp structures. These facilities could be improved by "tightening" the ramp radii or by installing channelization islands, but major reconstruction across the bridge would be required to make a safe passage from the south end of the corridor to the north. Over time, highway-oriented corridors like this section of Benvenue Road tend to face severe issues with declining property values, commercial occupancy, and an in-migration of low-value services and housing stock in a continuing downward spiral accompanied by ever-greater congestion, crashes, and vehicular delay. The roadway corridor becomes a place to move through as quickly as possible, capable of only supporting a very limited range of retail uses. An important part of the objective of this project was to suggest relatively "constructable" design improvements that would add considerable value to the corridor in terms of safety, appearance, and performance to make the corridor viable for pedestrian movement.

PEDESTRIAN SCALE LIGHTINC

As the following sheet layouts show a connected sidewalk system, pedestrians should have the option to use the system at all times. Therefore it is important to have pedestrian- scale lighting along the corridor to improve its safety and encourage access to the many commercial establishments along the corridor. A well-lit sidewalk system can also aid in traffic calming by signaling drivers that they have entered a different zone, and encouraging them to slow their driving speed.

The light pole spacing suggested in the following sheets is supported by typical DOT lighting schemes, approximately spaced every 150 '. But this can be altered to achieve the desired outcome. It is important, however, to place fixtures at roadway and driveway crossings for a safety reasons.

As the pedestrian realm becomes safer with lighting and therefore more frequented, placemaking elements such as benches, small plazas, waste receptacles and enhanced bus stops should be implemented in conjunction and create a corridor more conducive to pedestrian and merchant activities. The style of fixture can also bring streetscape character and identity to a city or a particular "district" within a city. To add, lighting fixtures can be the perfect placement for banners to display the city (or district) identity through adopted city logos (image to right) and or temporary special events and holidays.

CONCEPTUAL DESIGN ELEMENTS

The focus of the improvements included the following actions:

1. Improve sight lines and physical geometry at intersections;
2. Modify pavement markings and signage in conjunction with other changes;
3. Create sidewalk and pedestrian facilities (e.g., push-button-activated signals) in several stretches and intersection locations;
4. Suggest cross-connections to improve the overall connectivity around the corridor, thereby allowing for better circulation between properties for motorists, pedestrians, and bicyclists;
5. Suggest streetscaping improvements, particularly lighting and street trees in key locations; and
6. Create a median-divided facility where feasible, including directional cross-overs to direct turning movements, reduce conflicts, and create a more refined, urban appearance to the overall roadway. Several cross-section renderings were produced to help convey the general layout of the roadway conceptual design proposals.

The design concept sheets on the following pages (note also that a "roll plot" showing the full length of the corridor is also available) highlight suggested locations for these improvements. A more robust design effort, including vertical and horizontal surveying, would need to occur to help develop these recommendations more fully before moving to final construction. The opinion of probable costs associated with these improvements are based upon linear quantities, and should be considered a high-level, planning-era estimate only. Again, more refinement in the design of the project recommendations is required before producing a cost that could be considered suitable for budgeting purposes.

STREET TREES

A total of 103 street trees are shown in the following sheets, spaced 40 ' o.c. Street trees recommended for North Carolina with special attention given to species with the ability to handle air pollution and heat stress involved with urban environments include: Green Ash, Thornless Honeylocust, Bald Cypress, Japanese Zelkova, European Hoenbeam and Eastern Red Cedar. These urban species are recommended from the North Carolina Forest Service with many others found at: http://ncforestservice.gov/Urban/urban_recommendedstreettrees.htm.

SECTION A- taken from cross section location on Sheet Layout 1

SECTION B- taken from cross section location on Sheet Layout 2

Bicycle and Pedestrian Facilities	Length（in miles）	Width	Cost（per mile）	Cost（per ft）	Cost
Sidewalks，Including Curb－and－Gutter	2.55	5 ft	\＄320，000	\＄61	\＄816，000
ADA Ramp（ea．）	84	N／A	\＄1，200		\＄100，800
Supporting Facilities	Quantity	Cost Per			Cost
Pedestrian Signal（2－way）	20	\＄1，900			\＄38，000
Tree（Landscaping）	88	\＄500			\＄44，000
Lighting（Pedestrian Scale）	105	\＄1，500			\＄157，500
Crosswalk（Tape，Traverse Lines，ea．）	5	\＄100			\＄500
Crosswalk（Tape，Ladder，ea．）	20	\＄300			\＄6，000
Roadway	Length（in miles）		Cost（per mile）		Cost
3 Lane Curb／Gutter	． 3		\＄2，500，000	\＄473	\＄754，893
Widening	1．71（9，049ft）		\＄1，400，000	\＄265	\＄2，394，000
Additional Right Turn Lane	． 05 （264ft）		\＄1，056，000	\＄200	\＄56，600
Right－of－Way	Acres	Cost Per Acre			Cost
Neighborhood／Retail	0.9598	\＄655，000			\＄628，669
Cost Estimates	Explanation				
Subtotal Construction Contingency TOTAL CONSTRUCTION COST	Percent of Facilities Subtotal－20\％				$\begin{aligned} & \$ 4,996,962 \\ & \$ 873,658 \\ & \mathbf{\$ 5 , 8 7 0 , 6 2 1} \end{aligned}$

[^0]
[^0]: -Proposed Connection
 -Existing Connection

